ANALISIS KETERKAITAN NETWORK PHAMACOLOGY SENYAWA METABOLIT SEKUNDER Abrus precatorius L. SECARA IN SILICO
Abstract
Cancer remains a global health challenge, prompting extensive research efforts worldwide. Lung cancer, the second most diagnosed cancer, presents a particularly grim survival rate. In Indonesia, cancer incidence ranks significantly, with millions affected and hundreds of thousands succumbing to the disease annually. Traditional medicine persists as a preferred option among many, perceived as safer and more affordable. Abrus precatorius L., an ancient medicinal plant, holds promise in this regard, with a rich history of use and a diverse range of pharmacological activities, including anti-cancer properties. Employing in silico modeling and network pharmacology, this study explores the interaction between Abrus precatorius L. compounds and various proteins associated with cancer. Through bioinformatics tools and databases, 27 bioactive compounds are identified and their physicochemical properties assessed, ensuring adherence to pharmacological guidelines. The study predicts potential protein targets for Abrus precatorius L. compounds, revealing interactions with 453 proteins, including those implicated in cancer pathways. Further analysis using StringDB and DISEASES database establishes protein-protein interaction networks, highlighting key proteins like EGFR and TERT, pivotal in multiple cancer types. The study validates the compounds' adherence to Lipinski's Rule of Five, indicating their potential for pharmacological activity and oral absorption. False Discovery Rate (FDR) analysis confirms significant associations between Abrus precatorius L. compounds and various cancers, further underscoring their therapeutic potential. In conclusion, Abrus precatorius L. compounds, particularly targeting EGFR and TERT proteins, emerge as promising candidates for cancer treatment. Their diverse pharmacological activities and interactions with key cancer-related proteins pave the way for further exploration and development of these compounds as alternative medicinal agents. In vitro and in vivo studies are warranted to validate their efficacy, particularly in addressing the complexities of different cancer types. Ultimately, this research offers valuable insights into leveraging natural compounds for combating cancer, addressing a critical need in global healthcare.
Downloads
References
Baranwal, N., Doravari, P., & Kachhoria, R. (2022). Classification of Histopathology Images of Lung Cancer Using Convolutional Neural Network (CNN). Disruptive Developments in Biomedical Applications, 2, 75–89.
Batool, S., Javed, M. R., Aslam, S., Noor, F., Javed, H. M. F., Seemab, R., Rehman, A., Aslam, M. F., Paray, B. A., & Gulnaz, A. (2022). Network Pharmacology and Bioinformatics Approach Reveals the Multi-Target Pharmacological Mechanism of Fumaria indica in the Treatment of Liver Cancer. Pharmaceuticals, 15(6).
Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small Molekuls. Scientific Reports, 7(March), 1–13.
Dratwa, M., Wysoczańska, B., Łacina, P., Kubik, T., & Bogunia-Kubik, K. (2020). TERT-Regulation and Roles in Cancer Formation. Frontiers in immunology, 11, 589929. https://doi.org/10.3389/fimmu.2020.589929
Ferlay J, Ervik M, Lam F, Laversanne M, Colombet M, Mery L, Piñeros M, Znaor A, Soerjomataram I, Bray F (2024). Global Cancer Observatory: Cancer Today. Lyon, France: International Agency for Research on Cancer. Available from: https://gco.iarc.who.int/today, accessed [25 January 2024].
Freed, D. M., Bessman, N. J., Kiyatkin, A., Salazar-Cavazos, E., Byrne, P. O., Moore, J. O., Valley, C. C., Ferguson, K. M., Leahy, D. J., Lidke, D. S., & Lemmon, M. A. (2017). EGFR Ligands Differentially Stabilize Receptor Dimers to Specify Signaling Kinetics. Cell, 171(3), 683-695.e18.
Gu, J., Gui, Y., Chen, L., Yuan, G., Lu, H. Z., & Xu, X. (2013). Use of Natural Products as Chemical Library for Drug Discovery and Network Pharmacology. PLoS ONE, 8(4), 1–10.
Hartati, F. K., Djauhari, A. B., & Viol Dhea, K. (2021). Evaluation of pharmacokinetic properties, toxicity, and bioactive cytotoxic activity of black rice (Oryza sativa l.) as candidates for diabetes mellitus drugs by in silico. Biointerface Research in Applied Chemistry, 11(4), 12301–12311.
Herbst, R. S. (2004). Review of epidermal growth factor receptor biology. International Journal of Radiation Oncology Biology Physics, 59(2 SUPPL.), S21–S26.
Hussain, A. F. (2012). Specific delivery of therapeutic agents against cancers. Thesis.
Ismail, I. (2015). Faktor Yang Mempengaruhi Keputusan Masyarakat Memilih Obat Tradisional Di Gampong Lam Ujong. Idea Nursing Journal, 6(1), 7–14.
Jeong, S. A., Kim, K., Lee, J. H., Cha, J. S., Khadka, P., Cho, H. S., & Chung, I. K. (2015). Correction to “Akt-mediated phosphorylation increases the binding affinity of hTERT for importin α to promote nuclear translocation”. [J. Cell Sci., 128, (2015), 2287-2301]. Journal of Cell Science, 128(15), 2951–2951.
Kaur, A., Sharma, Y., Kumar, A., Ghosh, M. P., & Bala, K. (2022). In-vitro antiproliferative efficacy of Abrus precatorius seed extracts on cervical carcinoma. Scientific Reports, 12(1).
Lipinski, C. A. (2004). Lead- and drug-like compounds: The rule-of-five revolution. Drug Discovery Today: Technologies, 1(4), 337–341.
Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews 23 (1997( 3-25.1
Liu, H., Zeng, L., Yang, K., & Zhang, G. (2016). A network pharmacology approach to explore the pharmacological mechanism of xiaoyao powder on anovulatory infertility. Evidence-Based Complementary and Alternative Medicine, 2016. https://doi.org/10.1155/2016/2960372
Mukhopadhyay, S., Panda, P. K., Das, D. N., Sinha, N., Behera, B., Maiti, T. K., & Bhutia, S. K. (2014). Abrus agglutinin suppresses human hepatocellular carcinoma in vitro and in vivo by inducing caspase-mediated cell death. Acta Pharmacologica Sinica, 35(6), 814–824. https://doi.org/10.1038/aps.2014.15
Pires, D. E. V., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small-Molekul pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
Pletscher-Frankild, S., Pallejà, A., Tsafou, K., Binder, J. X., & Jensen, L. J. (2015). DISEASES: Text mining and data integration of disease-gene associations. Methods, 74(2015), 83–89.
Protti, Í. F., Rodrigues, D. R., Fonseca, S. K., Alves, R. J., de Oliveira, R. B., & Maltarollo, V. G. (2021). Do Drug-likeness Rules Apply to Oral Prodrugs? ChemMedChem, 16(9), 1446–1456.
Shannon P., Markiel A,, Ozier O., Baliga N. S., Wang J. T., Ramage D., Amin N., Schwikowski B., Ideker T.. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research 2003 Nov; 13(11):2498-504
Shofi, M. (2022). Studi In Silico Senyawa Kuarsetin Daun Kencana Ungu (Ruellia Tuberosa L.) Sebagai Agen Antikanker Payudara. Jurnal Sintesis: Penelitian Sains, Terapan Dan Analisisnya, 2(1), 1–9.
Sofi, M. S., Sateesh, M. K., Bashir, M., Ganie, M. A., & Nabi, S. (2018). Chemopreventive and anti-breast cancer activity of compounds isolated from leaves of Abrus precatorius L. 3 Biotech, 8(8), 371. https://doi.org/10.1007/s13205-018-1395-8
TERT - Telomerase reverse transcriptase - Homo sapiens (Human) | UniProtKB | UniProt. (n.d.). Retrieved March 17, 2024, from https://www.uniprot.org/uniprotkb/O14746/entry
Wängler, C., Moldenhauer, G., Eisenhut, M., Haberkorn, U., & Mier, W. (2008). Antibody-dendrimer conjugates: The number, not the size of the dendrimers, determines the immunoreactivity. Bioconjugate Chemistry, 19(4), 813–820.