Potensi Ekstrak Etanol Biji Bunga Telang (C.ternatea L.) sebagai Agen Antihiperlipidaemia (Studi In Silico)

  • Atik Kurniawati Poltekkes kemenkes Malang
  • Nur Rahman Nur Rahman Poltekkes kemenkes Malang
  • Dwipajati Dwipajati Poltekkes kemenkes Malang
Keywords: potensi, biji telang, hiperlipidaemia, in silico

Abstract

Hiperlipidemaemia didalam tubuh ditandai dengan meningkatnya kadar kolesterol didalam darah. Dibutuhkan hambatan kompetitif terhadap HMG-CoA reduktase.Senyawa dari tanaman herbal bunga telang (Clitorea ternatea L.) berpotensi sebagai agen antihiperlipidaemia. Tujuan penelitian ini adalah untuk mengetahui potensi biji bunga telang (C. ternatea L.) sebagai agen antihiperlipidemia melalui studi in silico. Persiapan ligand dengan reseptor menggunakan software YASARA. Moleculer docking menggunakan software PLANTS. Visualisasi menggunakan LigPlus dan PyMol. Reseptor yang digunakan adalah struktur kristal HMG-CoA reduktase dengan kode PDB 1HW9 dan ligand kontrol simvastatin.Hasil penelitian menunjukkan senyawa phloretin, trifolin dan trigonelline yang diprediksi memberikan efek antihiperlidemia berdasarkan studi in silico karena memiliki interaksi masing-masing secara berurutan yaitu phloretin (-64,05), trifolin (-59,24) dan trigonelline (-52,76). Residu asam amino yang berperan dalam ikatan ligand dengan reseptor adalah Asp 767, Tyr 761, Ala 768, Asn 771, Glu 801, Gln 770, Ser 774, Met 655, Ile 802, Gln 766.

Downloads

Download data is not yet available.

References

Al-snafi, A. E. (2016). Pharmacological importance of Clitoria ternatea – A review Pharmacological importance of Clitoria ternatea – A review Prof Dr Ali Esmail Al-Snafi. IOSR Journal of Pharmacy, 6(3).
Aqeel, M. T., Ur-Rahman, N., Khan, A. U., Ashraf, Z., Latif, M., Rafique, H., & Rasheed, U. (2018). Antihyperlipidemic studies of newly synthesized phenolic derivatives: In silico and in vivo approaches. Drug Design, Development and Therapy, 12. https://doi.org/10.2147/DDDT.S158554
Brown, A. J., & Sharpe, L. J. (2016). Cholesterol Synthesis. In Biochemistry of Lipids, Lipoproteins and Membranes: Sixth Edition. https://doi.org/10.1016/B978-0-444-63438-2.00011-0
Chen, B., Tian, J., Zhang, J., Wang, K., Liu, L., Yang, B., Bao, L., & Liu, H. (2017). Triterpenes and meroterpenes from Ganoderma lucidum with inhibitory activity against HMGs reductase, aldose reductase and α-glucosidase. Fitoterapia, 120. https://doi.org/10.1016/j.fitote.2017.05.005
Istvan, E. S., & Deisenhofer, J. (2001). Structural mechanism for statin inhibition of HMG-CoA reductase. Science, 292(5519). https://doi.org/10.1126/science.1059344
Jeffrey, J., Sudigdoadi, S., Kurnia, D., & Satari, M. H. (2020). A monoterpenoid isolated from citrus aurantifolia peel and its potential as an antibacterial for the inhibition and eradication of streptococcus mutans biofilm. Systematic Reviews in Pharmacy, 11(6). https://doi.org/10.31838/srp.2020.6.175

Korb, O., Stützle, T., & Exner, T. E. (2009). Empirical scoring functions for advanced Protein-Ligand docking with PLANTS. Journal of Chemical Information and Modeling, 49(1). https://doi.org/10.1021/ci800298z
Lin, S. H., Huang, K. J., Weng, C. F., & Shiuan, D. (2015). Exploration of natural product ingredients as inhibitors of human HMG-CoA reductase through structure-based virtual screening. Drug Design, Development and Therapy, 9. https://doi.org/10.2147/DDDT.S84641
Liou, C. J., Wu, S. J., Shen, S. C., Chen, L. C., Chen, Y. L., & Huang, W. C. (2020). Phloretin ameliorates hepatic steatosis through regulation of lipogenesis and Sirt1/AMPK signaling in obese mice. Cell and Bioscience, 10(1). https://doi.org/10.1186/s13578-020-00477-1
Luo, J., Yang, H., & Song, B. L. (2020). Mechanisms and regulation of cholesterol homeostasis. In Nature Reviews Molecular Cell Biology (Vol. 21, Issue 4). https://doi.org/10.1038/s41580-019-0190-7
Marpaung, A. M. (2020). Tinjauan manfaat bunga telang (clitoria ternatea l.) bagi kesehatan manusia. Journal of Functional Food and Nutraceutical, 1(2). https://doi.org/10.33555/jffn.v1i2.30
Muhammad Ezzudin, R., & Rabeta, M. S. (2018). A potential of telang tree (Clitoria ternatea) in human health. Food Research, 2(5). https://doi.org/10.26656/fr.2017.2(5).073
Navar-Boggan, A. M., Peterson, E. D., D’Agostino, R. B., Neely, B., Sniderman, A. D., & Pencina, M. J. (2015). Hyperlipidemia in early adulthood increases long-term risk of coronary heart disease. Circulation, 131(5). https://doi.org/10.1161/CIRCULATIONAHA.114.012477
Nisar, M. F., Khadim, M., Rafiq, M., Chen, J., Yang, Y., & Wan, C. C. (2021). Pharmacological Properties and Health Benefits of Eugenol: A Comprehensive Review. In Oxidative Medicine and Cellular Longevity (Vol. 2021). https://doi.org/10.1155/2021/2497354
Nouh, F., Omar, M., & Younis, M. (2019). Risk Factors and Management of Hyperlipidemia. Asian Journal of Cardiology Research, 2(1).
Oluba, O. M., Adebiyi, F. D., Dada, A. A., Ajayi, A. A., Adebisi, K. E., Josiah, S. J., & Odutuga, A. A. (2019). Effects of Talinum triangulare leaf flavonoid extract on streptozotocin-induced hyperglycemia and associated complications in rats. Food Science and Nutrition, 7(2). https://doi.org/10.1002/fsn3.765
Purnomo, H. (2011). Kimia komputasi: molecular docking PLANTS. Pustaka Pelajar.
Solanki, Y. B., & Jain, S. M. (2010). Antihyperlipidemic activity of Clitoria ternatea and Vigna mungo in rats. Pharmaceutical Biology, 48(8). https://doi.org/10.3109/13880200903406147
Stancu, C., & Sima, A. (2001). Statins: Mechanism of action and effects. Journal of Cellular and Molecular Medicine, 5(4). https://doi.org/10.1111/j.1582-4934.2001.tb00172.x
Stewart, J., McCallin, T., Martinez, J., Chacko, S., & Yusuf, S. (2020). Hyperlipidemia. Pediatrics in Review, 41(8). https://doi.org/10.1542/pir.2019-0053
Wang, S., & Bao, X. (2019). Hyperlipidemia, blood lipid level, and the risk of glaucoma: A meta-analysis. Investigative Ophthalmology and Visual Science, 60(4). https://doi.org/10.1167/iovs.18-25845
Xia, Y., Feng, H., Li, Z. W., Tang, K. X., Gao, H. Q., Wang, W. L., Cui, X. P., & Li, X. L. (2020). Low-dose phloretin alleviates diabetic atherosclerosis through endothelial KLF2 restoration. Bioscience, Biotechnology and Biochemistry, 84(4). https://doi.org/10.1080/09168451.2019.1699396
Yao, Y. S., Li, T. Di, & Zeng, Z. H. (2020). Mechanisms underlying direct actions of hyperlipidemia on myocardium: An updated review. In Lipids in Health and Disease (Vol. 19, Issue 1). https://doi.org/10.1186/s12944-019-1171-8
Zhao, Y. yuan, Fan, Y., Wang, M., Wang, J., Cheng, J. xue, Zou, J. bo, Zhang, X. fei, Shi, Y. jun, & Guo, D. yan. (2020). Studies on pharmacokinetic properties and absorption mechanism of phloretin: In vivo and in vitro. Biomedicine and Pharmacotherapy, 132. https://doi.org/10.1016/j.biopha.2020.110809
Published
2023-05-31